视频一区视频二区在线观看_国产欧美激情在线观看_免费的av网址_莫妮卡裸全乳无删减电影_免费的一级黄色片_福利姬免费_欧美jizz19性欧美_在线观看免费视频国产_日本免费三级电影_亚洲tv在线_很黄很色的视频_亚洲免费视频一区_91黄色影视_草莓视频.www_成人欧美一区二区三区白人

你的位置:首頁 > RF/微波 > 正文

帶有分布式鎖相環的相控陣的系統級LO相位噪聲模型

發布時間:2022-10-08 來源:Peter Delos,ADI 責任編輯:wenwei

【導讀】對于數字波束成形相控陣,要生成LO,通常會考慮的實現方法是向分布于天線陣列中的一系列鎖相環分配常用基準頻率。對于這些分布式鎖相環,目前文獻中還沒有充分記錄用于評估組合相位噪聲性能的方法。


在分布式系統中,共同噪聲源是相關的,而分布式噪聲源如果不相關,在RF信號組合時就會降低。對于系統中的大部分組件,這都可以非常直觀地加以評估。對于鎖相環,環路中的每個組件都有與之相關聯的噪聲傳遞函數,它們的貢獻是控制環路以及任何頻率轉換的函數。這會在嘗試評估組合相位噪聲輸出時增加復雜性。本文基于已知的鎖相環建模方法,以及對相關和不相關貢獻因素的評估,提出了跟蹤不同頻率偏移下的分布式PLL貢獻的方法。


簡介


對于任何無線電系統,都需要為接收器和激勵器精心設計本地振蕩器(LO)生成的實現方法。隨著數字波束成形在相控陣天線系統中不斷普及,需要在大量分布式接收器和激勵器中分配LO信號和基準頻率,這讓設計變得更加復雜。


在系統架構層面需要權衡的因素包括,分配所需的LO頻率或分配較低的頻率基準,以及在靠近使用點的物理位置產生所需的LO。通過鎖相環從本地產生LO是一種高度集成的現成選項。下一個挑戰是評估來自各種分布式組件以及集中式組件的系統級相位噪聲。


采用分布式鎖相環的系統如圖1所示。常用基準頻率被分配至多個鎖相環,各產生一個輸出頻率。圖1a中的LO輸出被假設為圖1b的混頻器的LO輸入。


1662714029104357.png

圖1. 分布式鎖相環系統。每個振蕩器都被鎖相到一個共同的參考振蕩器上。從1到N的LO信號都應用到相控陣中所示的混頻器的LO端口上。


系統設計人員面臨的一個挑戰是跟蹤分布式系統的噪聲貢獻、了解相關和不相關的噪聲源,并估計整體的系統噪聲。在鎖相環中,這個挑戰變得更加嚴峻,因為噪聲傳遞函數都是鎖相環中的頻率轉換和環路帶寬設置的函數。


動機:組合鎖相環測量示例


圖2所示為針對組合鎖相環的測量示例。這些數據是通過組合來自多個ADRV9009收發器的發射輸出獲得的。圖中所示為單個IC、兩個組合IC和四個組合IC的情況。對于這個數據集,在IC組合之后,可以看到明顯的10logN改進。為了達到這個結果,需要采用一個低噪聲晶體振蕩器參考源。下一節建模的動機是推導出一種方法,以計算在具有許多分布式收發器的大型陣列中,更廣泛地說是在具有分布式鎖相環的任何架構中,這種測量結果會如何變化。


13.png

圖2. 兩個組合鎖相環的相位噪聲測量。


鎖相環模型


鎖相環中的噪聲建模已有充分的文檔記錄。1-5圖3所示為輸出相位噪聲圖。在這種類型的圖中,設計師可以快速評估環路中每個組件的噪聲貢獻,而這些貢獻因素累計起來即可決定整體的噪聲性能。模型參數設置為代表圖2所示的數據,源振蕩器用于估算將大量IC組合在一起時的相位噪聲。


14.png

圖3. 典型的鎖相環相位噪聲分析,顯示所有組件的噪聲貢獻??傇肼暿撬胸暙I因素的總和。


要檢驗分布式鎖相環的效果,首先要從PLL模型導出參考貢獻和其余PLL組件的貢獻。


將已知的PLL模型擴展為分布式PLL模型


下文將介紹為具有多個分布式鎖相環的系統計算組合相位噪聲的過程。這種方法的前提是能夠將參考振蕩器的噪聲貢獻與VCO和環路組件的噪聲貢獻分離開來。圖4所示為一個假設的分布式示例,一個參考振蕩器對應多個PLL。這個計算假設了一個無噪聲分布,這不切實際,但可以用來說明原理。假設分布式PLL的噪聲貢獻是不相關的,并減少10logN,其中N表示分布式PLL的數量。隨著通道增加,噪聲在較大偏移頻率下得到改善,對于大型分布系統,噪聲變得幾乎完全由參考振蕩器主導。


1662713993699153.png

圖4. 開始采用分布式鎖相環相位噪聲建模方法:從鎖相環模型中提取參考振蕩器和鎖相環中除參考振蕩器外的所有其他組件的相位噪聲貢獻。作為分布式鎖相環數量的函數,組合相位噪聲假設參考噪聲是相關的,而分布在多個PLL之間的噪聲貢獻是不相關的。


圖4所示的示例簡化了對參考振蕩器分布的假設。在真正的系統分析中,系統設計人員還應該考慮參考振蕩器分布中的噪聲貢獻,它們會降低總體結果。但是,像這樣的簡化分析是非常有用的,能夠讓人了解架構方面的權衡會如何影響系統的總體相位噪聲性能。接下來我們來看看分布系統中相位噪聲的影響。


參考分布中的相位噪聲說明


接下來將評估兩個分布選項示例??紤]的第一種情況如圖5所示。在這個示例中,選擇了一個常用于快速調諧VCO頻率的寬帶PLL。參考信號的分布是通過時鐘PLL IC實現的,這種IC也常用于簡化數字數據鏈路(如JESD接口)的時序限制。左下角顯示了各個貢獻因素。這些貢獻因素位于器件的頻率,并未調整到輸出頻率。右下角的相位噪聲圖顯示了不同數量的分布式PLL的系統級相位噪聲。


16.png

圖5. 分布中具有PLL IC的分布式寬帶PLL。


該模型的有些特性值得注意。假設采用一個高性能晶體振蕩器,標稱頻率為100 MHz,中央振蕩器的單個貢獻因素反映在可用的較高端晶體振蕩器上,雖然不一定是較好、較昂貴的可用選擇。雖然中央振蕩器輸出實際上會扇出到有限數量的分布式PLL,但這些PLL會再次按某個實際限值扇出并重復,以實現系統中的完整分布。對于本例中的分布貢獻,假設有16個分布組件,然后假設它們會再次扇出。左下角所示的分布電路的單個貢獻是不含參考振蕩器貢獻的PLL組件的噪聲。本例中的分布假設與源振蕩器同頻率,并根據該函數可用的典型IC來選擇噪聲貢獻因素。


寬帶PLL假設采用S波段標稱頻率,設置采用1 MHz環路帶寬(盡量與實際環路的帶寬一般寬),以進行快速調諧。


值得注意的是,選擇這些模型是為了代表可能的實際情況,且說明了陣列中的累積效應。任何詳細的設計或許都能夠改善特定的PLL噪聲曲線,這在預料之中,且這種分析方法旨在幫助從工程角度去決定應將設計資源分配在哪些位置以獲得優質總體效果,而不是為了做出相對于可用組件的確切論斷。


圖5右下角的圖計算了LO分布的總組合相位噪聲。其中應用了各個貢獻因素的PLL噪聲傳遞函數,它們都被調整至輸出頻率,也包含PLL環路帶寬的影響。系統數量也包括在內,并且假設它們是不相關的,因此,這個貢獻減少了10logN。假設分布數量為16,如前所述,分布貢獻會減少10log16。在實踐中,隨著分布不斷重復,這種貢獻會進一步減少。但是,額外的噪聲貢獻不那么顯著。對于大型陣列中的扇出分布,噪聲將由第一組有源器件主導。在16組扇出的情況下,如果每個有源器件都是16個其他有源器件的輸入,那么在所有器件互不相關的情況下,16個器件的額外分布層只會降低~0.25 dB。如果繼續這種分布,總體貢獻將更小。因此,為了簡化分析,不會考慮這種影響,且分布的噪聲貢獻通過計算前16個并行分布組件得出。


所得的曲線說明了幾種效果。與單個PLL模型相似,近載波噪聲由基準頻率主導,遠載波噪聲由VCO主導,且在將不相關的VCO組合起來時,遠載波噪聲得到改善。這一點相當直觀。不太直觀的是,模型的值在由分布中的選擇主導的偏移頻率中占較大比重。這一結果導致考慮具有更低噪聲分布和更窄PLL環路帶寬的第二個示例。


圖6顯示了一種不同的方法。采用相同的低噪聲晶體振蕩器作為參考。但通過RF放大器來分配,而不是通過PLL重定時和重新同步。選擇固定頻率的分布式PLL。這會產生兩種效果:采用單個頻率且調諧范圍較窄時,VCO本質上可以更好,且環路帶寬可以變得更窄。左下角的圖顯示了各個貢獻因素。中央振蕩器與前一個例子相同。請注意分布放大器:考慮低相位噪聲放大器時,它們的性能不是特別高,但比起使用PLL LC(如之前的示例)要好得多。VCO更好、環路帶寬更窄時,分布式PLL在更高偏移頻率下會得到改善,但在~1 kHz的中間頻率下時,實際上要比寬帶PLL示例差。右下角顯示組合結果:參考振蕩器主導低頻,而高于環路帶寬時,性能會由分布式PLL主導,且隨著分布式PLL的陣列尺寸和數量增加而提高。


17.png

圖6. 分布式窄帶PLL,分布中具備放大器。


圖7顯示這兩個示例之間的比較。注意~2 kHz到5 kHz偏移頻率范圍內的大范圍差異。


18.png

圖7. 圖5和圖6之間的比較,顯示了基于所選的分布和架構的廣泛系統級性能范圍。


分布式PLL陣列級考慮因素


基于對總體系統相位噪聲性能的加權貢獻的理解,可以得出幾個與相控陣或多通道RF系統架構相關的結論。


PLL帶寬


針對相位噪聲優化的傳統鎖相環設計將環路帶寬設置為偏移頻率,以最小化總體相位噪聲曲線。此時的頻率一般是參考振蕩器相位噪聲按輸出頻率標準化后與VCO相位噪聲相交的頻率。對于具有多個鎖相環的分布式系統,這可能不是最佳環路帶寬。分布式組件的數量也需要考慮。


要在采用分布式鎖相環實現的系統中獲得最佳LO噪聲,需要采用一個較窄的環路帶寬來最小化參考振蕩器的相關噪聲貢獻。


對于需要快速調優PLL的系統,通常會擴大環路帶寬來優化速度。遺憾的是,這種優化分布式相位噪聲貢獻的思路本身就是背道而馳的??朔@一問題的選擇之一是在寬帶環路之前設置分布式窄帶清理環路,以降低參考噪聲和分布噪聲相關位置的偏移頻率。


大型陣列


對于使用數千個通道的系統,如果分布式組件的貢獻之間保持互不相關,則系統能夠獲得大幅改進。主要考慮的問題可能圍繞參考振蕩器的選擇展開,以及面向分布式接收器和激勵器維持低噪聲分布系統。


直接采樣系統


隨著速度和RF輸入帶寬持續提升的GSPS轉換器的不斷普及,直接采樣系統正逐漸在微波頻率實現。這導致出現一種有趣的取舍現象。數據轉換器只需要一個時鐘頻率,RF調諧完全在數字域中完成。通過限制調諧范圍,可以構建具備相位噪聲性能更高的VCO。這也使得創建數據轉換器時鐘的PLL的環路帶寬降低。更低的環路帶寬會將參考振蕩器的噪聲傳遞函數降至更低的偏移頻率,從而減少它在系統中的貢獻。這一點,再加上改進過的VCO,在某些情況下可能給分布式系統帶來好處,即使單通道比較結果似乎更青睞替代架構:


組件選項


根據系統架構中所需的選擇,設計人員擁有大量可用的組件選項。2018年度RF、微波和毫米波產品選型指南更新版現已發布。


近期的集成VCO/PLL選項包括 ADF4371/ADF4372。它們提供的輸出頻率分別高達32 GHz和16 GHz,采用–234 dBc/Hz的先進PLL相位噪聲FOM。 ADF5610 提供高達15 GHz的輸出。 ADF5355/ADF5356 的輸出可達13.6 GHz,ADF4356的輸出可達6.8 GHz。


對于單獨的PLL和VCO配置, ADF41513 的工作頻率可達26 GHz,且配有一個先進的鎖相環相位噪聲FOM,其相位噪聲FOM為-234dBc/Hz。有時,在選擇PLL IC時要考慮的一個問題是在盡可能高的頻率上操作鑒相器,從倍增20logN到輸出頻率,最小化環路中的噪聲。 HMC440, HMC4069, HMC698 和 HMC699 采用的PFD的工作頻率高達1.3 GHz。對于VCO,2018年選型指南列出了幾十個VCO選項,范圍從2 GHz到26 GHz不等。


對于直接采樣選項,ADC和DAC均已發布。產品支持在L頻段和S頻段直接采樣。ADC具有更高的輸入頻率帶寬,支持C頻段直接采樣。 AD9208 是一個雙通道3 GSPS ADC,輸入頻率為9 Ghz,支持在上Nyquist區采樣。AD9213是一個單通道10 GSPS ADC,支持具有較大瞬時帶寬的接收器。對于DAC, AD917x系列采用雙通道12 GSPS DAC,AD916x系列采用單通道12 GSPS DAC,經過優化之后可實現更低的殘留相位噪聲和更好的SFDR。兩個系列都支持L頻段和S頻段波形生成。


本節僅提供入門指南。頻率更高、性能更好的新器件層出不窮。請訪問我們的網站 analog.com,或者聯系本地銷售支持團隊獲得最新的IC信息。


結語


本文介紹了為采用分布式鎖相環的系統評估相位噪聲的方法。該方法的前提是:每個組件都可以通過其各自的噪聲、組件與系統輸出之間的噪聲傳遞函數、使用的數量以及器件之間的任何相關性來進行跟蹤。所示的示例并不意在對可用的組件或架構功能進行論斷。它們旨在說明一種方法,以幫助設計人員在數字波束成形相控陣中,對LO中的陣列級相位噪聲貢獻因素以及為分布式波形發生器和接收器提供服務的時鐘分布網絡進行有根據的評估。


參考電路


1 Ulrich Rohde,《微波和無線頻率合成器:理論與設計》。Wiley,1995年。


2 Floyd Gardner,《鎖相技術》。第三版,Wiley,2005年。


3 Dean Banerjee,《PLL性能、仿真和設計》,第四版。Dog Ear Publishing,2006年8月。


4 Dan Wolaver,《鎖相環電路設計》。Prentice Hall,1991年2月。


5 Avi Brillant?!傲私怄i相DRO設計的各方各面。”Microwave Journal,2000年9月。


6 Peter Delos. “Phase-Locked Loop Noise Transfer Functions”。High Frequency Electronics,2016年1月。


7 ADS PLL示例?!癙LL相位噪聲”。Keysight技術。


8 ADIsimPLL。ADI公司


9 Ian Collins. “鎖相環(PLL)基本原理”?!赌M對話》,2018年7月。


10 E. Anthony Nelson. “相控陣的噪聲考慮因素”。IEEE,Telesystems會議,1991年。


11 Heng-Chia Chang. “面向波束控制有源相控陣、帶有獨立振蕩器的耦合鎖相環分析”。IEEE Transactions on Microwave Theory and Techniques,第52卷,第3期,2004年3月。


12 Thomas H?hne and Ville Ranki. “波束合成過程中的相位噪聲”。 IEEE Transactions on Wireless Communication ,第9卷,第12期,2010年12月。


13 Antonio Puglielli, Greg LaCaille, Ali Niknejad, Gregory Wright, Borivoje Nikolic, and Elad Alon. “OFDM多用戶波束合成陣列中的相位噪聲測量與跟蹤”。IEEE ICC,無線通信研討會,2016年5月。



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:


RX24T電機驅動配置:3電阻采樣(上)

如何應對不間斷電源(UPS)設計挑戰

Sub-GHz無線SoC選料,如何選到最適合你的那一顆?

電氣化和智能化,會給汽車上的MEMS帶來什么變化?

有關eFuse電子保險絲,你應該了解的技術干貨,都在這里!

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

精品人妻一区二区色欲产成人 | 色婷五月 | 国产在线播放不卡 | 宝贝~把内裤和胸罩脱了 | 五月丁香啪啪 | 粉色视频免费 | 欧美精品成人在线 | 一边亲一边摸一边脱一边免费 | 麻豆专区 | 班长露出强行被男生揉 | 视频一区视频二区在线观看 | 欧洲一区二区视频 | 国产一区二区三区播放 | 丁香六月久久 | 亚洲第一二三四区 | 男人天堂久久 | 色性av| 亚洲天堂一区 | 国产精品吴梦梦 | 麻豆视频一区二区 | 不用播放器的av网站 | 在线观看免费观看 | 黑人精品xxx一区一二区 | 艳魔大战2春荡女淫三级 | 天天爽天天干 | 久久人人爽爽人人爽人人片av | 三年中文在线观看中文版 | 国产理论在线 | 欧美一区二区 | 天天天天天干 | 欧美日韩综合一区二区三区 | 中文字幕视频在线 | 超碰在线91 | 亚洲精品中文字幕 | 国产精品99久久久久久久久 | 91片黄在线观看 | 成人一区在线观看 | 娇小6一8小毛片 | 日韩麻豆 | 97中文在线 | www.av在线播放| 国产91丝袜在线播放九色 | 被c到喷水嗯h厨房交换视频 | 萌白酱福利视频 | 91成人精品 | 不卡av在线播放 | 亚洲777| 国产精品久久久久久久久久久久久 | 蜜桃av网| 国产乱码精品一区二区三区忘忧草 | 国产在线播放不卡 | 伊人影院在线观看 | 波多野结衣人妻 | 亚洲一区二区三区乱码 | 人人爱人人看 | 精品久久五月天 | 色哟哟网页 | 欧美男人操女人 | 免费黄色小说视频 | 男人插女人下面 | 久久人人爽爽人人爽人人片av | 中文字幕在线高清 | 国产91丝袜在线播放九色 | 美女被揉胸动态图 | 三级性生活片 | sleepless动漫在线观看免费 | 在线性视频 | 精品视频久久 | www.天天操.com| 国产免费黄色小说 | 超碰人人人 | 欧美丰满老妇熟乱xxxxyyy | 免费在线播放 | 99视频在线看 | 成人一区在线观看 | 三级性生活片 | 老鸭窝成人 | 黑人精品xxx一区一二区 | 国产精品原创 | 国产探花在线精品一区二区 | 中文字幕亚洲一区二区三区五十路 | xxxx69日本| 久久免费少妇高潮久久精品99 | 蜜臀久久99精品久久一区二区 | 亚洲精品久久一区二区三区777 | 宝贝~把内裤和胸罩脱了 | 快播一级片 | 污视频在线网站 | 黑人操亚洲女人 | 久久免费少妇高潮久久精品99 | 精品精品精品 | 国产片大尺度裸露床戏 | 国产精品人人妻人人爽人人牛 | 波多野结衣在线看 | 日韩精品免费在线 | 日韩综合在线视频 | 黄页网站免费观看 | 精品久久五月天 | 在线观看国产黄色 | 亚洲精品字幕 | 婷婷射图| 亚洲精品久久一区二区三区777 | 男男双性顶撞喘嗯啊 | 成人黄色一级电影 | 少妇高潮在线观看 | 国产成年人免费视频 | 天天天天天干 | 一级黄色大片免费观看 | 久久精品a | 一本高清dvd在线播放 | 超碰人人插 | 婷婷中文字幕 | 亚洲图片综合网 | 色狠狠一区二区三区 | 粉色视频免费 | 伊人久久综合 | 中文字幕精品亚洲 | 中文在线字幕 | 蜜桃亚洲 | 国产精品区二区三区日本 | 禁欲总裁被揉裆呻吟故事动漫 | 中文字幕亚洲无线码在线一区 | 欧美a级黄色 | 中文字幕亚洲一区二区三区五十路 | 九九热只有精品 | 超碰在线1 | 国产午夜性春猛交ⅹxxx | 特级免费毛片 | 久久精品a | sleepless动漫在线观看免费 | 久久免费少妇高潮久久精品99 | 国内精品在线观看视频 | 天天天天天干 | 人妻无码久久精品人妻 | 亚洲欧美日韩精品 | 一边亲一边摸一边脱一边免费 | 久久中文字幕影院 | 日韩精品四区 | 国内老熟妇对白hdxxxx | 玖玖天堂| 国产精品人人妻人人爽人人牛 | 欧美日韩综合一区二区三区 | 久久国产福利 | 精品人妻一区二区色欲产成人 | 国产成年人免费视频 | 国产91丝袜在线播放九色 | 黄色高清视频在线观看 | 女明星yin乱聚会 | 中文字幕精品亚洲 | 国产精品第二页 | 美女黄色免费网站 | 美足av电影 | 欧美大成色www永久网站婷 | 久久精品a | 国产成人短视频在线观看 | 国产精品视频一二三区 | 亚洲伦乱 | 麻豆亚洲av熟女国产一区二 | www.天天操.com | 欧美爱爱爱| 波多野结衣在线观看一区 | 在线观看黄色小说 | 色狠狠一区二区三区 | 久久色网 | 女明星yin乱聚会 | 亚洲精品丝袜日韩 | 激情综合激情 | 国产探花在线精品一区二区 | 国产成人短视频在线观看 | 日韩成人综合网 | 黄色小说在线观看视频 | 在线观看国产黄色 | 久久人人爽爽人人爽人人片av | 8x8x华人永久免费视频 | 班长露出强行被男生揉 | 性福利视频 | 久久免费少妇高潮久久精品99 | 色哟哟网页 | 成人激情五月天 | 国产熟妇另类久久久久 | 找国产毛片看 | 亚洲av电影一区二区 | 中文字幕精品亚洲 | 午夜资源站 | 99视频在线看 | 男生艹女生 | 娇小6一8小毛片 | 天天插天天色 | 国产精品人妻 | 国产乱码精品一区二区三区忘忧草 | 日韩性片 | 性欧美18一19性猛交 | 不用播放器的av网站 | 亚州av一区二区 | 免费黄色小说视频 | free性video法国极品 | 日本女优中文字幕 | 免费黄色小说视频 | 涩涩天堂 | 黄页网站免费观看 | 这里只有精品9 | av不卡在线看 | 美足av电影| 自拍偷拍第二页 | 欧美黑人狂野猛交老妇 | 久久久久91视频 | 国产激情av | 性爱免费视频 | 国产美女视频 | 日韩在线二区 | 国产精品人人妻人人爽人人牛 | 在线性视频 | 国产成人啪精品午夜在线观看 | 国产成人短视频在线观看 | 在线观看日本 | 精品视频久久 | 超碰人人插 | 一边亲一边摸一边脱一边免费 | 狠狠干影视 | 中文在线字幕 | 性欧美18一19性猛交 | 波多野结衣在线观看一区 | 欧美国产日韩一区二区 | 少妇搡bbbb搡bbb搡小说 | 8x8x华人永久免费视频 | 成人黄色一级电影 | 樱花av | 国产精品污www一区二区三区 | 色骚综合| 国产精品色综合 | 亚洲国产精品自拍 | 波多野结衣成人在线 | 亚州黄色 | 欧美黑人狂野猛交老妇 | 人人爱爱| 91高清在线免费观看 | 欧美国产日韩一区二区 | 精品中文视频 | 国产精品99久久免费黑人人妻 | 欧美黑人狂野猛交老妇 | 香蕉视频色 | 亚洲av电影一区二区 | 久久这里只有精品99 | 亚洲色图首页 | 国产一区二区三区播放 | 精品黑人 | 草草影院av | 国产精品视频一二三区 | 天堂网成人 | 男生操女生的视频软件 | 女人十八毛片嫩草av | 欧美zzoo| 斑马电影街 | 快播一级片 | 香蕉av在线播放 | 先锋影音成人 | 色妞www精品视频 | 欧美爱爱爱 | 天天色天 | www.天天操.com | 自拍偷拍第二页 | 草草影院av | 中文字幕亚洲无线码在线一区 | 奇米影视av | 视频一区视频二区在线观看 | 91手机在线| 男生操女生的视频软件 | 91热热 | 欧美一卡二卡三卡 | 欧美一级性片 | 久热精品在线观看 | 国产精品99久久久久久久久 | 亚洲图片综合网 | 黑人精品xxx一区一二区 | 在线观看免费观看 | 黄页网站免费观看 | 老太色hd色老太hd | 香蕉污视频 | 国产熟妇另类久久久久 | 亚洲不卡视频 | 嗯啊视频 | 精品久久久久久久久久久久久久久久久 | 人妻无码久久精品人妻 | 亚洲国产精品自拍 | 蜜桃亚洲 | 色骚综合 | 99视频在线看 | 国产熟妇另类久久久久 | 男男双性顶撞喘嗯啊 | 国产精品99久久免费黑人人妻 | 国产美女视频 | 男人添女人荫蒂视频 | 黄色小说在线观看视频 | 玖玖天堂 | 我和岳交换夫妇爽4p晓娟小说 | 色哟哟网页 | 国产理论在线 | 国产一区亚洲一区 | 国产精品久久久久久久久久久久久 | 波多野结衣在线一区 | 久热精品在线观看 | 日韩激情文学 | 国产精品色综合 | 日韩aaaaaa | 亚洲日批 | av资源每日更新 | 中文字幕精品亚洲 | 国产一区二区三区播放 | 国产一区亚洲一区 | 黄色小说在线观看视频 | 91高清在线免费观看 | 麻豆影视在线观看 | 亚洲综合视频一区 | 波多野结衣在线一区 | 性欧美18一19性猛交 | 亚洲第一二三四区 | 男人的天堂在线 | av老司机在线观看 | 女性裸体无遮挡胸 | 五月婷婷综合激情 | 精品久久久久久久久久久久久久久久久 | 夜色影院在线观看 | 黄色的片片片片 | 午夜色大片 | 国产免费黄色小说 | 日少妇视频 | 孕妇xxxxx孕交xxxxx | 国产一区亚洲一区 | 成人激情五月天 | 超碰韩国 | 操欧美孕妇 | 亚洲午夜天堂 | 我和岳交换夫妇爽4p晓娟小说 | 成人黄色一级电影 | 天天天天天干 | 破处av | 国产精品178页 | 五十路毛片 | 香蕉av网 | 蜜桃亚洲| 日韩在线二区 | 超碰在线1| 午夜亚洲一区 | 日批免费在线观看 | 波多野结衣在线观看一区 | 日本精品视频在线观看 | 在线免费毛片 | 欧美日韩激情一区 | 爆操杨幂 | 精品视频91 | www.天天操.com| 欧美三级色图 | 精品久久久久久久久久久久久久久久久 | 涩涩天堂 | 国产精品人妻 | 中文字幕5566 | 久久中文字幕影院 | 少妇搡bbbb搡bbb搡小说 | 欧美丰满老妇熟乱xxxxyyy | 久久这里只有精品99 | 一边亲一边摸一边脱一边免费 | 被c到喷水嗯h厨房交换视频 | 97超级碰碰碰 | 日本女优中文字幕 | 91视频在线免费观看 | 国产成人无码一区二区三区在线 | 久草精品视频 | 国产91丝袜在线播放九色 | 韩国一级淫片免费看 | 国内精品在线观看视频 | 久艹视频在线观看 | 久久这里只有精品99 | 韩国裸体美女 | 91欧美视频 | 91国产丝袜播放在线 | 欧美另类z0zx974 | 日韩精品免费一区二区夜夜嗨 | 日本女优中文字幕 | 欧美a级黄色| 一本高清dvd在线播放 | 日本女优中文字幕 | 97中文在线 | 欧美爱爱爱 | 91手机在线 | 激情亚洲天堂 | 亚洲精品二区三区 | 三年中文在线观看中文版 | 国产无遮挡在线观看 | 快播一级片 | 日批的视频 | 色狠狠一区二区三区 | 中文字幕视频在线 | 女主播裸身做直播大全 | 日韩激情文学 | 在线观看黄色小说 | 91久久影院| 午夜草逼| 无码精品一区二区三区在线 | 综合伊人 | 91春色 | 破处av| 新天堂在线资源 | 黄色天堂 | 91视频在线免费观看 | 国产一区亚洲一区 | 国内老熟妇对白hdxxxx | 在线观看黄色网 | 短裙公车被强好爽h吃奶视频 | 韩国裸体美女 | 中文字幕婷婷 | 亚洲国产精品自拍 | 精品久久99 | 正在播放日韩精品 | 精品久久久久久久久久久久久久久久久 | 亚洲综合视频一区 | 国产精品99久久久久久久久 | 精品久久久久久久久久久久久久久久久 | 波多野结衣在线看 | 中文字幕亚洲一区二区三区五十路 | 久久免费少妇高潮久久精品99 | 我和岳交换夫妇爽4p晓娟小说 | 久艹视频在线观看 | 婷婷射图 | 中文字幕婷婷 | 五月婷婷综合激情 | 免费黄色小说视频 | 久久免费少妇高潮久久精品99 | 超碰韩国 | 在线观看日本 | 久久免费在线观看 | 五月婷婷综合激情 | 国产精品99久久免费黑人人妻 | 国产乱码精品一区二区三区忘忧草 | 黄色小说在线观看视频 | 国产成年人免费视频 | 欧美精品成人在线 | 超碰在线91 | 欧美国产日韩一区二区 | 亚洲国产精品自拍 | 麻豆久久久 | 91视频一区二区 | 美国禽片禁式1一9 | 欧美一区二区 | 久久免费国产 | 成人一区在线观看 | av资源每日更新 | 欧美日韩激情一区 | 久久国产精品免费视频 | 69亚洲乱人伦 | 中文字幕日韩在线视频 | 精品久久久久久久久久久久久久久久久 | 日韩性片 | 久久精品国产亚洲av麻豆色欲 | av色图 | 正在播放日韩精品 | 波多野结衣人妻 | 我和岳交换夫妇爽4p晓娟小说 | 不用播放器的av网站 | 嫩草影院一区二区 | 69亚洲乱人伦 | 亚州黄色 | 欧美一区二区 | 亚洲系列 | 亚洲午夜天堂 | 少妇高潮在线观看 | 大陆一级片 | 黄色的片片片片 | 性欧美18一19性猛交 | 少妇av在线| 夜色影院在线观看 | 午夜草逼 | 亚洲福利免费 | 娇小6一8小毛片 | 国产美女视频 | 久久精品a | 三级性生活片 | 亚洲视频精选 | 精品视频久久 | 天堂网成人| 性福利视频 | 色小妹av | 精品人妻一区二区色欲产成人 | 狠狠干影视 | 综合伊人| 天堂中文资源在线观看 | 中国女人内谢69xxxx | 极品美女在线 | 超碰人人人 |