视频一区视频二区在线观看_国产欧美激情在线观看_免费的av网址_莫妮卡裸全乳无删减电影_免费的一级黄色片_福利姬免费_欧美jizz19性欧美_在线观看免费视频国产_日本免费三级电影_亚洲tv在线_很黄很色的视频_亚洲免费视频一区_91黄色影视_草莓视频.www_成人欧美一区二区三区白人

你的位置:首頁 > 電源管理 > 正文

如何消除步進電機的噪音和振動?

發布時間:2023-08-21 責任編輯:lina

【導讀】由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。


步進電機的噪音來自哪里?

由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。

步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。

步距角分辨率和細分

典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。

一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。


4-0.gif
Figure 1: Full-step operation

步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 2: Half-step operation


低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 3: Pendulum behavior of the rotor leads to vibrations


在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。

電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 4: Reduction of motor vibrations when switching from full-step

to high microstep resolutions


斬波和PWM模式

噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。

傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is
not equal to target current


在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。

相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。

這一點在電機從靜止或低速到中速過程中非常重要。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 6: Zero-crossing plateau with classic of-time chopper modes


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 7: SpreadCycle hysteresis chopper with clean zero crossing


如何使步進電機實現完全的靜音?

盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。

T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。

TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。

圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode

步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode


StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。

這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。

除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 10: Zoomed-in PWM view of both motor phases and coil current
with voltage-controlled StealthChopTM  chopper mode


步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
Figure 11: Zoomed-in PWM view of both motor phases and coil current
with current-controlled SpreadCycleTM  chopper mode


對步進電機來說改變了什么?

如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。

但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。

StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。

TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。

下載本文:如何消除步進電機的噪音和振動?


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:

適用于高性能功率器件的 SiC 隔離解決方案

REASUNOS瑞森半導體碳化硅二極管在大功率電源上的應用

使用FPGA實現自適應全陣列局部調光解決方案

集成穩壓器消除了對分立元件的需求

180 W 功率因數校正電源


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

av视屏在线| 九九热只有精品 | 日韩综合在线视频 | 不卡av在线播放 | 自拍偷拍第二页 | 人人澡人人爽 | 萌白酱福利视频 | 五月香婷婷| 亚洲一区视频在线播放 | 日韩精品视频在线观看免费 | www.男人天堂 | 亚洲日批 | 国产激情对白 | 斑马电影街| 亚洲午夜天堂 | 日韩成人综合网 | 欧美同性视频 | 亚洲播放器 | 中文字幕精品亚洲 | 男女免费视频 | 久艹视频在线观看 | 69亚洲乱人伦| 女主播裸身做直播大全 | 一本久久久 | 亚洲丰满 | 中文字幕亚洲无线码在线一区 | 超碰在线1 | 国产成人短视频在线观看 | 久操资源| 破处av| 美日韩精品视频 | 亚洲欧洲自拍 | 久久色网 | 调教骚受| 在线性视频 | 欧美大成色www永久网站婷 | 一级黄色小视频 | 国产精品178页 | 国产精品污www一区二区三区 | 男人天堂久久 | 国产在线播放不卡 | 综合伊人 | 欧美怡红院一区二区三区 | 日本大尺度激情做爰hd | 在线观看黄色小说 | 欧美男人操女人 | 国产中文字幕免费 | 五月婷婷综合激情 | 中文字幕在线高清 | 色狠狠一区二区三区 | 嫩草影院一区二区 | 男男视频肉 | 亚州黄色| 欧美一卡二卡三卡 | 禁欲总裁被揉裆呻吟故事动漫 | 夜色影院在线观看 | 国产三级一区 | 玖玖色在线 | 亚洲天堂一区 | 亚洲视频一二三区 | 男人的天堂在线 | 黄色三级图片 | 国产精品第二页 | 超碰人人人 | 亚洲精品中文字幕 | 国产麻豆91视频 | 免费播放片大片 | 波多野结衣在线观看一区 | 欧美视频你懂的 | 黄色的片片片片 | 国产精品99久久久久久久久 | 88福利视频| 亚洲第一二三四区 | 欧美a级黄色 | 一区二区视频免费 | 中文字幕亚洲一区二区三区五十路 | 在线免费毛片 | 波多野结衣在线观看一区 | 在线性视频 | 中文字幕亚洲一区二区三区五十路 | 色骚综合 | 91手机在线 | 亚洲色图首页 | 短裙公车被强好爽h吃奶视频 | 无码精品一区二区三区在线 | 久久国产福利 | 老女人黄色片 | 综合久久久久久久 | 波多野结衣在线观看一区 | 婷婷射图| a黄色大片 | 亚洲最新网址 | 久久av在线| 男男双性顶撞喘嗯啊 | 波多野结衣在线观看一区 | 男人的天堂在线 | 国产精品原创 | 黑人精品xxx一区一二区 | 我和岳交换夫妇爽4p晓娟小说 | 国产熟妇另类久久久久 | 日韩爱爱网址 | 人妻射精一区二区 | 一边亲一边摸一边脱一边免费 | 男人操女人30分钟 | 亚洲播放器 | 国产探花在线精品一区二区 | 日本大尺度激情做爰hd | 中文字幕日韩在线视频 | 激情综合av | 激情综合av| 国产成人啪精品午夜在线观看 | 在线国产日韩 | 日韩精品视频在线观看免费 | 在线观看免费观看 | 欧美国产日韩一区二区 | 欧美大成色www永久网站婷 | 视频一区视频二区在线观看 | 国产麻豆91视频 | 色综合国产 | 国产激情av| 在线免费毛片 | 国产探花在线精品一区二区 | 女性裸体无遮挡胸 | 亚洲第一二三四区 | 美国禽片禁式1一9 | 久热精品在线观看 | 国产精品吴梦梦 | 91久久影院 | 激情小说在线 | 国产做受高潮动漫 | 国产精品178页 | 亚洲精品久久一区二区三区777 | 正在播放欧美 | 国产18照片色桃 | 国产精品最新 | 麻豆专区| 人妻无码久久精品人妻 | 久久亚洲av无码西西人体 | 日本三级韩国三级美三级91 | 亚洲综合色一区 | 黄色的片片片片 | 蜜臀久久99精品久久一区二区 | 极品美女在线 | 婷婷射图| 久久色网 | 一区二区视频免费 | 日本女优黄色 | 美女被揉胸动态图 | 黄色小说在线观看视频 | 女明星yin乱聚会 | 五月丁香啪啪 | 日本三级韩国三级美三级91 | 日本亲与子乱ay中文 | 日韩综合在线视频 | 国产一极片 | av资源每日更新 | 国产午夜性春猛交ⅹxxx | 国产精品原创 | 国产片大尺度裸露床戏 | 欧美日韩综合一区二区三区 | 国产三级一区 | 伊人久久综合 | 蜜臀久久99精品久久一区二区 | 亚洲丰满| 在线无限看免费粉色视频 | 中国女人内谢69xxxx | 亚洲色图首页 | 日韩精品免费一区二区夜夜嗨 | 波多野结衣在线看 | 精品国模| 日韩成人综合网 | 艳魔大战2春荡女淫三级 | 日韩精品免费在线 | 麻豆影视在线观看 | 在线观看日本 | 欧美性生交xxxxxdddd | 国产三级一区 | 丁香六月久久 | 日韩在线二区 | 中文字幕亚洲无线码在线一区 | 91手机在线 | 五月中文字幕 | 亚洲成人免费av | 第一次处破女h圆房~h嗯啊 | 被c到喷水嗯h厨房交换视频 | 中文字幕无码精品亚洲资源网久久 | 国产乱码精品一区二区三区忘忧草 | 亚洲天堂一区 | 婷婷射图| 久久中文字幕影院 | 午夜窝窝 | 国产激情对白 | 少妇高潮在线观看 | 成人黄色一级电影 | 麻豆久久久 | 一区二区视频免费 | 国产18照片色桃 | 国产成人短视频在线观看 | 久久久久久国产精品视频 | 操欧美孕妇 | 亚洲精品99| 日本午夜小视频 | 国产三级视频在线 | 孕妇xxxxx孕交xxxxx | 宝贝~把内裤和胸罩脱了 | 这里只有精品9 | 宝贝~把内裤和胸罩脱了 | 美女高潮流白浆 | 玖玖天堂 | 亚洲超碰在线观看 | 国产成年人免费视频 | 在线免费毛片 | 成人深夜网站 | 精品精品精品 | 国产91丝袜在线播放九色 | 成人激情五月天 | 波多野结衣在线观看一区 | 激情小说在线 | 波多野结衣在线看 | 黄视频在线免费 | 色综合国产 | 色哟哟网页 | 福利二区| 国产精品入口麻豆 | 欧美日韩综合一区二区三区 | 国内精品在线观看视频 | 97自拍视频 | 午夜色大片 | 亚洲综合视频一区 | 在线黄色小说 | 奇米影视av | 日韩久久成人 | 三年中文在线观看中文版 | 草莓视频www二区在线观看 | 在线观看日本 | 玖玖色在线 | 人人澡人人爽 | 免费播放片大片 | 中文字幕日韩在线视频 | 欧美丰满老妇熟乱xxxxyyy | 五十路毛片 | 91成人精品 | 国产三级麻豆 | 新天堂在线资源 | 嫩草影院一区二区 | 在线观看黄色小说 | 亚洲av电影一区二区 | 老女人黄色片 | 香蕉视频色 | 男生艹女生 | 男生操女生的视频软件 | 蜜臀久久99精品久久一区二区 | 绝顶高潮videos合集 | 日韩精品视频在线观看免费 | 超碰人人插 | 大陆一级片 | 日韩性片 | 国产三级视频在线 | 国产熟妇另类久久久久 | 中文字幕无码精品亚洲资源网久久 | 91成人精品| 中文字幕xxx| 樱花av| 污视频在线网站 | 国产无遮挡在线观看 | 69亚洲乱人伦| 久久人人爽爽人人爽人人片av | 国产精品99无码一区二区 | 三上悠亚痴汉电车 | 久久疯狂做爰流白浆xx | 国产精品自拍99 | 禁欲总裁被揉裆呻吟故事动漫 | 亚洲第一二三四区 | 亚洲国产精品自拍 | 日本大尺度激情做爰hd | www.国产视频 | 色骚综合 | 欧美一区二区 | www.男人天堂 | 人妻射精一区二区 | 嫩草视频 | 一级黄色大片免费观看 | 国产成年人免费视频 | 日韩性片| 亚洲第一二三四区 | 草免费视频 | 欧美另类z0zx974 | 久久色网| 激情文学综合网 | 精品人妻一区二区色欲产成人 | 亚洲一区二区三区乱码 | 草莓视频www二区在线观看 | 操欧美孕妇 | 中文字幕亚洲无线码在线一区 | 久艹视频在线观看 | 先锋影音成人 | 精品视频久久 | 美女av在线播放 | 日韩免费黄色片 | 艳魔大战2春荡女淫三级 | 欧美另类z0zx974 | 色狠狠一区二区三区 | 欧美怡红院一区二区三区 | 久久久久久国产精品视频 | 男男视频肉 | 斑马电影街| 绝顶高潮videos合集 | 波多野结衣在线一区 | 在线观看国产黄色 | a久久久久 | 久操资源| 日本精品视频在线观看 | 精品国产xxx | 91手机在线 | 这里只有精品9 | 国产午夜性春猛交ⅹxxx | 新天堂在线资源 | 日本大尺度激情做爰hd | 88福利视频 | 女人十八毛片嫩草av | 国产激情av | 亚洲播放器 | a黄色大片| 久久看视频 | 在线观看黄色小说 | 日韩精品四区 | 欧美一卡二卡三卡 | 国产三级精品视频 | 在线观看黄色网 | 超碰韩国 | 男人天堂久久 | 69re视频 | 黄色片a级 | 女人十八毛片嫩草av | 91欧美视频 | 日韩精品免费一区二区夜夜嗨 | 波多野结衣成人在线 | 日韩性片 | 在线观看免费观看 | 特级免费毛片 | 日韩爱爱网址 | 久热精品在线观看 | 九九热只有精品 | 国产一极片 | 性爱免费视频 | 激情亚洲天堂 | 色狠狠一区二区三区 | 亚洲系列 | 自拍偷拍第二页 | 老太色hd色老太hd | 国产熟妇另类久久久久 | 中文字幕5566 | 国产精品人妻 | 国产三级麻豆 | 这里只有精品9 | 天堂中文资源在线观看 | 玖玖色在线 | 斑马电影街 | 欧美日韩综合一区二区三区 | 午夜影院污 | 伊人影院在线观看 | 五月丁香啪啪 | 麻豆专区 | sleepless动漫在线观看免费 | 男人插女人下面 | 国产精品99久久久久久久久 | 日本午夜小视频 | 国产三级一区 | 找国产毛片看 | 欧美大成色www永久网站婷 | 亚洲播放器 | 一级黄色大片免费观看 | 亚洲一二三区av | 正在播放欧美 | av不卡在线看 | 国产片大尺度裸露床戏 | 人妻无码久久精品人妻 | 国产免费三片 | 黄色小说在线观看视频 | 欧美性生交xxxxxdddd | 久久久久久国产精品视频 | 久久久久91视频 | 国产精品视频一二三区 | 五月在线视频 | 精品久久五月天 | 国产精品99无码一区二区 | 精品久久久久久久久久久久久久久久久 | 正在播放日韩精品 | 欧美丰满老妇熟乱xxxxyyy | 久久看视频 | 黄页网站免费观看 | www.国产视频 | 色婷五月 | 玖玖色在线 | 国产成人短视频在线观看 | 日韩在线二区 | 极品美女在线 | 麻豆专区 | 午夜国产一级 | 91热热 | 国产情侣91| 色婷五月 | 久久这里只有精品99 | 色妞www精品视频 | 午夜色大片 | 一本高清dvd在线播放 | 福利二区| 亚洲成人免费av | 男男双性顶撞喘嗯啊 | av不卡在线看 | 一边亲一边摸一边脱一边免费 | 久久久久极品 | 激情文学综合网 | 亚洲精品丝袜日韩 | 无码精品一区二区三区在线 | 日本午夜小视频 | 成年人在线网站 | 美女av在线播放 | 久久精品国产亚洲av麻豆色欲 | 国产精品99无码一区二区 | 成人av无码一区二区三区 | 久久这里只有精品99 | 操白丝美女 | 中文字幕婷婷 | 波多野结衣1区 | 女明星yin乱聚会 | 第一次处破女h圆房~h嗯啊 | 麻豆亚洲av熟女国产一区二 | 草莓视频www二区在线观看 | 亚洲欧美在线综合 | 天天插天天色 | 免费在线播放 | 美女av在线播放 | 久久亚洲av无码西西人体 | 被c到喷水嗯h厨房交换视频 | 麻豆亚洲av熟女国产一区二 | 日本大尺度激情做爰hd | 日韩性片 | 国产探花在线精品一区二区 | a视频在线看 | 狠狠干夜夜 | 少妇搡bbbb搡bbb搡小说 | 欧美爱爱爱 | 故意穿暴露被强好爽 | 亚洲日批| 黄视频在线免费 | 色性av | 成人黄色一级电影 | 日批的视频 | 一本高清dvd在线播放 | 久久这里只有精品99 | 91国产丝袜播放在线 | 色五丁香| 成人av无码一区二区三区 | 国产激情对白 | 综合伊人 | 男男双性顶撞喘嗯啊 | free性video法国极品 | 日韩精品四区 | 久热精品在线观看 | 亚洲 欧美 激情 另类 | 老鸭窝成人 | 美国禽片禁式1一9 | 中文字幕xxx | 黄色的片片片片 | 国产精品最新 | 色哟哟网页 | 久热精品在线观看 | 嗯啊视频| 国产探花在线精品一区二区 | 视频一区视频二区在线观看 | 久久色网 | 在线国产日韩 | 欧美精品成人在线 | 男人天堂久久 | 久久精品a | 美女高潮流白浆 | 欧美黑人狂野猛交老妇 | 久久亚洲av无码精品色午夜麻豆 | 一区二区视频免费 | 国产成人短视频在线观看 | 日韩免费黄色片 | 欧美操老女人 | av不卡在线看 | 日韩麻豆| 波多野结衣成人在线 | 麻豆亚洲av熟女国产一区二 | 国内精品在线观看视频 |