视频一区视频二区在线观看_国产欧美激情在线观看_免费的av网址_莫妮卡裸全乳无删减电影_免费的一级黄色片_福利姬免费_欧美jizz19性欧美_在线观看免费视频国产_日本免费三级电影_亚洲tv在线_很黄很色的视频_亚洲免费视频一区_91黄色影视_草莓视频.www_成人欧美一区二区三区白人

你的位置:首頁(yè) > 光電顯示 > 正文

在PCR熱循環(huán)時(shí)為何選用薄膜熱電?

發(fā)布時(shí)間:2012-12-04 責(zé)任編輯:abbywang

【導(dǎo)讀】薄膜熱電的冷卻器中有幾個(gè)關(guān)鍵優(yōu)點(diǎn),特別適合用于PCR。這些優(yōu)勢(shì)包括:較小的尺寸和厚度相同的熱量抽水能力;更快速的熱響應(yīng)(最高10X更大);先進(jìn)的集成能力。同時(shí)小尺寸,能夠使集成到系統(tǒng)的影響最小。


Background

Polymerase chain reaction (PCR) is a scientific technique that amplifies a single or a few copies of a specific piece of DNA by several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence. Developed in 1983, PCR has rapidly become one of the most widely used techniques in molecular biology and for good reason: it is a rapid, inexpensive and simple means of producing relatively large quantities of whole or fractional DNA strands copied from minute quantities of source DNA material even when the source DNA is of relatively poor quality. Applications for PCR include DNA cloning for sequencing, DNA-based phylogeny, or functional analysis of genes; the diagnosis of hereditary diseases; the identification of genetic fingerprints (used in forensic sciences and paternity testing); and the detection and diagnosis of infectious diseases.
Use of Thin-Film Thermoelectrics in PCR Thermal Cycling
Figure 1: Use of Thin-Film Thermoelectrics in PCR Thermal Cycling
 
The broad life science division has witnessed rapid growth and technological improvements varying from sector to sector for the past three to five years. Even during the recent recession years, the PCR industry has experienced an accelerating growth rate confirming the positive growth prospects. Molecular diagnostics and the Human Genome Project (HGP) are two of the main drivers contributing to the growth of gene amplification technology.  It covers all segments such as drug discovery, DNA amplification, forensic identification, gene therapy and diagnosis. Newly developed PCR instruments for detecting life threatening diseases also signal positive growth.
During DNA replication
Figure 2: During DNA replication, each strand of the original molecule acts as a template for the synthesis of a new, complementary DNA strand.

[page]
Market Drivers

Smaller, faster, cheaper is the rallying cry for virtually every successful product on the market, and the PCR market is no exception. It is clear that the PCR market has and will continue to have significant near or above double-digit growth year after year.  One of the significant trends in the PCR market today is a movement towards smaller, individually addressable wells (containing the DNA).  Historically, systems were comprised of large 96-well thermal cyclers for large industry applications. 

Companies are now developing applications that require individually addressable wells, where only a few samples are tested at a time. An additional requirement would be that each well be individually programmable. The requirement to have individually addressable wells enables different reagents to be simultaneously applied to identical DNA samples with different outcomes intended.

Another rapidly developing market is food safety and security.  According to a recently published report by Strategic Consulting Inc. (SCI), the market for microbiological testing in the food sector has been growing at nearly 9% every year since 1998. The food sector now accounts for nearly half of the total industrial microbiology market. The SCI report estimates that by 2013, the number of tests carried out worldwide will be nearly 970 million, up from 740 million in 2008. The drivers for this growth are identified as an overall increase in food production, food safety concerns, demands from retailers and an increase in regulatory requirements.

Thermal Cycling and the PCR Process

The PCR process is very versatile. Many types of samples can be analyzed for nucleic acids. Most PCR uses DNA as a target, rather than RNA, because of the stability of the DNA molecule and the ease with which DNA can be isolated. By following a few basic rules, problems can be avoided in the preparation of DNA for the PCR. The essential criteria for any DNA sample is that it contains at least one intact DNA strand encompassing the region to be amplified, and that any impurities are sufficiently diluted so as not to inhibit the polymerization step of the PCR reaction.

PCR requires thermal cycling, i.e., alternately heating and cooling the DNA sample in a defined series of temperature steps. These thermal cycling steps are necessary first to physically separate the two strands in a DNA double helix at a high temperature in a process called DNA melting. At a lower temperature, each strand is then used as the template in DNA synthesis by the DNA polymerase to selectively amplify the target DNA. As the PCR process progresses, the DNA generated is used as a template for replication, setting in motion a chain reaction in which the DNA template is exponentially amplified. Table 1 describes the thermal cycling steps, temperatures, and hold times required in a typical PCR process. The selectivity of PCR results from the use of primers that are complementary to the DNA region targeted for amplification under specific thermal cycling conditions.

A thermal cycler is an automated instrument specifically designed to generate the requisite thermal cycles for PCR. A typical device consists of a metal block with holes where plastic vials holding the PCR reaction mixtures are inserted. The instrument has an integrated heating/cooling unit that is used to systematically raise and lower the temperature of the block.  Thermoelectric coolers (TEC) are used for a large number of these systems.
Table 1: Typical thermal cycling steps used in the PCR Process
Typical thermal cycling steps used in the PCR Process
 
[page]
How Thermoelectric Coolers Function

Thermoelectric cooling makes use of the Peltier effect to create a heat flux between the junctions of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state heat pump that transfers heat from one side of the device to the other side against a temperature gradient (from cold to hot). To do this, electrical energy is required.  The electrical energy used for the pumping is converted into additional heat that must be removed from the system (much like the heat from a home air-conditioner unit).  A device that operates in this manner may also be called a Peltier device, Peltier diode, Peltier heat pump, solid state refrigerator, or thermoelectric cooler.
The cooling curve of a thermoelectric cooler at three different heat loads
Figure 3: The cooling curve of a thermoelectric cooler at three different heat loads (10%, 30% and 50% of the Qmax or maximum allowable heat load. TEC 

The most basic representation of a thermoelectric cooling device is a cooling curve (Figure 3). The cooling curve represents the ΔT (or temperature difference between the cold and hot sides of the TEC) as a function of the input electrical current to the TEC. There is a different curve for each unique amount of heat being pumped. Figure 2 shows three different examples.  As the heat pumped (Q) increases, the amount the TEC can cool is reduced.  For all cases, the maximum drive current for the module, Imax, provides the most cooling achievable from that TEC under the given load conditions.

Thin-film thermoelectric coolers (eTECs) operate in the same manner as conventional ones but offer several key advantages that are particularly well suited for PCR.  These advantages are:

Smaller footprint and thickness for the same heat pumping capacity (Fig. 4).
More rapid thermal response (up to 10X greater)
Advanced integration capability.  The small size enables integration into systems with minimal impact.

Size comparison of a 4 W Nextreme eTEC to a conventional
Figure 4: Size comparison of a 4 W Nextreme eTEC to a conventional TEC with the same heat pumping capacity.

[page]
Thermoelectrics for the PCR Process

The market for PCR is changing.  New applications pushing for portability and reduced analysis time offer the promise of large new markets.  In order to meet these requirements, systems having smaller lighter quicker TECs are required. Due to their low mass, thin-film thermoelectric devices are particularly well suited for producing rapid temperature changes while also achieving a uniform temperature distribution throughout the block, or enabling different temperatures in different parts of the block. This is particularly useful when testing suitable annealing temperatures for primers, which are required for initiation of the DNA replication sequence.

Thermal cyclers with thin-film technology inside can offer significantly shorter throughput times for DNA amplification. Precision temperature control takes the guesswork out of the traditional "trial and error" methods used in DNA amplification and reduces the need to run multiple trials to get the desired results. Thin-film technology can enable a new generation of thermal cyclers for equipment manufacturers that lower barrier-to-entry and increase opportunities for differentiation.

In 2008, Nextreme successfully demonstrated short cycle time temperature control for PCR using two eTEC thermoelectric modules that behave as microscopic Peltier heat pumps. Figure 4 shows example thermal profiles of the fluid in the well (“Water”) and the temperature of the sample holder (“Cu Cup”) that indicates how the TEC overdrives temperature to produce the desired thermal profile in the sample. 

Transient temperature measurement using thin-films in PCR thermal cycling
Figure 5: Transient temperature measurement using thin-films in PCR thermal cycling
 
As discussed above, each PCR step occurs at a different temperature, thus precision control is one the key features of a thermal cycler.

Implementation of eTECs in PCR amplification provides the following advantages: 

Shorter throughput times for DNA amplification
Fast temperature transition (10ºC per second)
Small mass of thermal cycler
Higher density of wells per machine
Physical size of conventional TEC prevents this versus the micro-size of eTECs
Precise temperature control
Ultra-fast response time
Uniquely high power pumping capability

[page]
Thin-Film Thermoelectrics Integration (Faster Cycles, Higher Throughput)

Thermal cycle times in PCR thermal cyclers are determined both by the dwell times during the denaturation, annealing, and extension phases and the thermal transition time between these phases. Thermal cycle time is minimized and throughput maximized by minimizing the transition time between the phases. Conventional PCR systems use large individual sample volumes (e.g.; 100 µL) and temperature transitions at 1 - 5 °C/s. However, while most PCR protocols are performed at the 25 µL to 50 µL scale, sample volume as low as 5 µL have also been shown to be successful.
Typical structure of a PCR thermal cycler using thin-film thermoelectric devices
Figure 6: Typical structure of a PCR thermal cycler using thin-film thermoelectric devices. 

A typical PCR thermal cycler using thin-film thermoelectric devices is shown in Figure 5. The thermal subsystem consists of a sample cartridge holder, support platform, thin-film thermoelectric module with integrated heat spreader interface, and heat sink (shown with fan). This subsystem is designed to provide rapid thermal cycling for single well or lab-on-chip designs. In conventional PCR systems intended for laboratory usage, multiple samples (e.g., 96 or more) are cycled simultaneously using a single large heat spreader and bulk thermoelectric device. Current market shifts towards doctor''''''''''''''''''''''''''''''''s office or patient side usage systems that handle 1 - 4 samples at a time are leading to a need for smaller and more rapid thermal cyclers.

The temperature transition rates (?C/s) between phases can be increased by the following:

minimizing the thermal capacity of the load (all components that must be heated and cooled)
minimizing the volume of the sample
minimizing the thermal resistance (conversely increase of thermal conductance) of the heat transfer structure on the sample side of the thermoelectric module.
optimizing the sample geometry to maximize the area for heat transfer into the sample cartridge and sample and to minimize the heat transmission distance in the sample. This can be achieved by integrating the sample side heat spreader into the thermoelectric module itself and matching its area with that of the sample area of the cartridge.

The high heat pumping capacity per unit area (typically measured in watts/cm2) of the thin-film modules, along with their inherent rapid response, enables extremely rapid temperature transitions in the sample. For optimized designs, temperature transition rates in the range of 20°C/s to 30°C/s are feasible for currently used sample volumes. For smaller sample volumes, even faster temperature transitions rates are possible.

A thermal cycler for a 50 µL sample volume was designed using a standard heat sink and fan with the sample chamber diameter of 16 mm and height of 0.25 mm. Typically used materials were assumed for the sample cartridge and film seal for the cycler shown in Figure 5. The thin-film thermoelectric module was optimized for the selected heat sink to minimize the thermal transition times.  The modeled thermal response of the system achieves the 70°C to 95°C transition in the sample in 1 second and 95°C to 50°C transition in 2 seconds. The simulated temperatures of the sample (red line), sample side spreader (blue line), and heat sink (green line), are shown in Figure 6.
Simulated thermal cycle using thin-film thermoelectric modules
Figure 7: Simulated thermal cycle using thin-film thermoelectric modules with a 50 µL sample volume and thermal cycler shown in Figure 6. The plot shows the sample temperature in red, the integrated sample side spreader temperature in blue, and the heat sink temperature in green

[page]
Electrical Considerations

The thin-film thermoelectric assembly as referenced in the PCR application above contains four eTEC HV56 modules connected electrically in series. The optimal drive current for these modules in a PCR application is likely to be in the -0.9A to 0.6A range. The range is achieved by applying negative (-) voltage to the assembly, which puts the eTEC into heating mode to achieve the 95C rise temperature, and then switching the polarity to put the eTEC into cooling mode to drive the device to the desired hold temperature. 

Several off-the-shelf thermoelectric cooler controllers or temperature controllers are available to drive and control Nextreme eTEC modules. These controllers use current sensing to control the eTEC current. The devices rely on an external NTC thermistor to sense the load temperature and provide a control loop to adjust the eTEC current and maintain a desired load temperature.

Nextreme''''''''''''''''''''''''''''''''s eTEC module assemblies can easily be connected electrically in series or parallel configurations to match system voltages and drive current requirements.

Reliability of Thin-Film Thermoelectric Technology in PCR Thermal Cycling

Nextreme has conducted rigorous reliability tests on the HV-family of thermoelectric modules.  The devices have surpassed baseline test in mechanical shock, thermal storage and power cycling.  In all cases, the results strongly indicate HV modules are reliable in use in PCR thermal cycling applications.

Non-Powered Environmental Stress

High-temperature storage provides a good indicator of long-term reliability, particularly as it relates to diffusion-based failure modes and interface stability.  The requirements for this test were 85?C for 2000 hours.  To further stress the module and accelerate temperature dependent failure mechanisms, Nextreme subjects thermoelectric modules to temperatures well above maximum operating conditions (typically 150?C).  Figure 7 shows the results of 150?C storage with read-points on the AC resistance at 254, 432, 1190, 1526 and 2534 hours.  The AC resistance varied less than 1% from the starting resistance in all cases.  This indicates there are no temperature driven changes in the thermoelectric material, contacts or interconnects under these conditions and the modules are stable.

Percent change in AC resistance of the HV14 modules
Figure 8:  Percent change in AC resistance of the HV14 modules taken at different times (hours) up to 2534 hours.  Less the 1% change in ACR was observed.
[page]
Powered Environmental Stress

Power cycling provides one of the most useful thermoelectric reliability tests as it simulates extreme usage by inducing large current pulses that simultaneously induce large thermal gradients in the device. These gradients produce expansion and contraction of the module that can lead to fatigue failures.  Conducting power cycling at elevated temperatures can also induce diffusion-based failures.  Figure 8 shows power cycling data of three HV14 modules at 90% of Imax for 100,000 cycles.  In this test, the cycle period was 5 seconds on and 5 seconds off.  This rapid cycling is enabled by the fast response time of the thin-film module and enables more rapid accumulation of data.  It also results in a rapid change in the internal stress of the devices that contributes to accelerated aging and fatigue. The ?T of the module was monitored throughout the testing and exhibited less than a 4% change over the entire 100,000 cycle test. 

Change in module
Figure 9:  Change in module .T over 100,000 cycles at 90% of Imax.
 
Summary

Rapid thermal cycling time is becoming increasingly important as PCR becomes more widely used in point-of-service applications.  The use of Nextreme’s thin-film thermoelectric eTECs provides two key attributes that enable this quickly emerging market, namely higher thermal response time and smaller size.   Nextreme has modeled and designed a thermal cycler capable of 1-2 second transition times for 50 ?l sample sizes that dramatically improves on the existing conventional Peltier solutions.  Further optimization is possible when considering the details of the end application including sample size, sample holder configuration, system size and cost. 

 

 

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索

關(guān)閉

?

關(guān)閉

亚洲视频一二三区 | 久久99精品国产 | 中日韩精品一区二区三区 | 婷婷射图 | 一色桃子av | 美女黄色免费网站 | 找国产毛片看 | 国产精品污www一区二区三区 | 欧美激精品| 精品久久免费视频 | 国产片大尺度裸露床戏 | 让娇妻尝试3p的刺激 | 沈悦高志欣 沈镇南原著小说 | 奇米91 | 国产69xx| 激情综合av | 黄色高清视频在线观看 | 欧美一区二区 | 蜜桃av免费观看 | 激情小视频在线观看 | 香蕉a| 国产在线播放不卡 | 美女被草 | 男女吻胸做爰摸下身 | 找国产毛片看 | 蜜桃亚洲| 新天堂在线资源 | 婷婷中文字幕 | 波多野结衣1区 | aaa一区二区三区 | www.色日本| 久久中文字幕影院 | 一级片中文字幕 | 伊人开心网 | 樱花av| 秋霞午夜视频 | 伊人久久综合影院 | 快播一级片 | 超碰人人人 | 91黄色免费| 在线国产日韩 | 亚洲欧美日韩精品 | 国产精品第二页 | 狠狠干影视| 日韩成人精品在线 | 男男视频肉 | 69re视频| 亚洲av电影一区二区 | 国产做受高潮动漫 | 短裙公车被强好爽h吃奶视频 | 孕妇xxxxx孕交xxxxx | 班长露出强行被男生揉 | 黄色小视频在线 | 欧美怡红院一区二区三区 | 成人深夜网站 | 在线亚洲欧洲 | 91偷拍视频 | 欧美国产日韩一区二区 | 国产在线播放不卡 | 亚洲色图首页 | 日韩激情文学 | 超碰韩国 | 国产一极片 | 五月婷婷俺也去 | 日韩精品免费一区二区夜夜嗨 | 精品黑人一区二区三区久久 | 久久疯狂做爰流白浆xx | 中文字幕亚洲无线码在线一区 | av福利在线 | 免费视频99 | sleepless动漫在线观看免费 | 国产精品人妻 | 国产精品第二页 | 99精品国自产在线 | 中文字幕婷婷 | 污污网站在线看 | av不卡在线看 | www.看片 | 欧美a在线 | 伊人影院在线观看 | 人妻无码久久精品人妻 | 亚洲第一区第二区 | 国产三级精品视频 | free性video法国极品 | 视频一区视频二区在线观看 | 蜜臀久久99精品久久一区二区 | 日本精品视频在线观看 | 欧美日韩www | 亚洲一二三区av | 粉色视频免费 | 国产成人无码www免费视频播放 | 超碰人人人 | 亚洲视频免费在线观看 | 国产探花在线精品一区二区 | 自拍偷拍第二页 | 免费黡色av | 国产乱码精品一区二区三区忘忧草 | 日韩一级片免费观看 | 香蕉视频色 | 人人插人人看 | 欧美怡红院一区二区三区 | 亚洲色图第一页 | 成人深夜网站 | igao在线视频 | 狠狠干影视 | 中文字幕亚洲无线码在线一区 | 天天干天天噜 | 宝贝~把内裤和胸罩脱了 | 国内精品在线观看视频 | 国产激情av| 懂色av一区二区三区四区五区 | 天堂网成人 | 欧美三级在线播放 | 懂色av一区二区三区四区五区 | av片在线看 | 欧美男人操女人 | 91春色 | 亚洲欧美日韩精品 | 亚洲国产精品自拍 | 国产午夜免费视频 | 成人av无码一区二区三区 | 九一国产在线观看 | 这里只有精品9 | 丁香六月久久 | 中文字幕在线高清 | 免费成人深夜夜国外 | 91九色网 | 天天干影院 | 国产精品久久一区二区三区| 亚洲白浆| 美女av在线播放 | 国产精品污www一区二区三区 | 污视频在线网站 | 久久久五月天 | 亚洲第一二三四区 | 玖玖天堂| 国产免费三片 | 色就色欧美 | 欧美人性生活视频 | 九一国产在线观看 | 黄色的片片片片 | 四虎影视永久免费 | 精品人妻一区二区色欲产成人 | 三年中文在线观看中文版 | 国产成人无码一区二区三区在线 | 少妇精品无码一区二区三区 | 亚洲精品99| 污视频在线网站 | 少妇搡bbbb搡bbb搡小说 | 中文字幕亚洲一区二区三区五十路 | 久热精品在线观看 | 日韩精品免费一区二区夜夜嗨 | 艳魔大战2春荡女淫三级 | 成人av无码一区二区三区 | 精品黑人一区二区三区久久 | 国产熟妇另类久久久久 | 亚洲福利免费 | 欧美一级性片 | 日本亲与子乱ay中文 | 在线观看国产黄色 | 综合久久久久久久 | 亚洲福利免费 | 女主播裸身做直播大全 | 国产三级视频在线 | 韩国裸体美女 | 五月天色人阁 | 国产吧在线 | 五月丁香啪啪 | 色小妹av| 黄色动漫在线观看 | 国产成人三级一区二区在线观看一 | 黄色综合网 | 欧洲一区二区视频 | 青青草国产在线视频 | 欧美乱码视频 | www.看片 | 激情综合激情 | 天天插天天色 | 女人精69xxxⅹxx | 欧美丰满老妇熟乱xxxxyyy | 国产精品久久久久久久久久久久久 | 久久伊人草 | 精品国产av一区二区三区 | 中文字幕婷婷 | www.看片 | 欧美大成色www永久网站婷 | 91欧美视频| 穿着情趣内衣被c了一夜 | 日韩精品视频在线观看免费 | 久久伊人草 | 欧美zzoo | 国产乱子伦精品 | 日韩亚洲一区二区 | 激情综合av| 国产精品9 | 久久天天操 | 日韩一级性 | 国产理论在线 | 激情小视频在线观看 | 让娇妻尝试3p的刺激 | 久久久青草 | 调教奶奴| 国av在线 | 一级黄色美女 | xxxx69日本 | 天堂中文资源在线观看 | 精品人妻一区二区色欲产成人 | 狠狠干夜夜 | 国产一区免费视频 | 男人插女人下面视频 | 超碰人人插 | 亚洲成人av | 国产精品不卡在线观看 | 欧美性狂猛xxxxxbbbbb | 波多野结衣在线看 | 草莓视频www二区在线观看 | 精品国模 | 亚洲一区视频在线播放 | 超碰韩国 | 在线视频第一页 | 午夜亚洲一区 | 伊人久久综合影院 | 日韩精品视频在线观看免费 | a黄色大片 | 国产无遮挡在线观看 | 穿着情趣内衣被c了一夜 | 黄色的片片片片 | 青青草原av | 正在播放日韩精品 | 香蕉a| 男人插女人下面 | 国产天堂在线观看 | 国产精品人人妻人人爽人人牛 | 91九色网 | 国产精品人妻 | 四虎影视永久免费 | 国产三级视频 | 在线观看黄色小说 | 国产无遮挡在线观看 | 亚洲一区二区在线视频 | www.少妇| 伊人久久免费 | 91成人在线观看喷潮 | 精品人妻一区二区色欲产成人 | 久久亚洲av无码精品色午夜麻豆 | 亚洲成人免费av | 99这里只有 | 精品香蕉一区二区三区 | 日本欧美亚洲 | 国产探花在线精品一区二区 | 成人深夜网站 | 在线观看国产黄色 | 四色在线 | 中文字幕在线高清 | 久久中文字幕影院 | 国产91丝袜在线播放九色 | 香蕉av网 | 日韩一级性 | 日本大尺度激情做爰hd | 国产精品自拍99 | 找国产毛片看 | 蜜臀久久99精品久久一区二区 | 四色在线 | 国产精品自拍99 | 久久久久极品 | 欧美日韩www | 久艹视频在线观看 | 日韩爽片 | 日韩免费黄色片 | 波多野结衣1区 | 中文字幕xxx | 香蕉视频911| 美国禽片禁式1一9 | 在线观看国产黄色 | 日本不卡一区二区 | 黄色小视频在线 | 99精品国自产在线 | 99这里只有 | 日韩一级性 | 久久久久91视频 | 欧美a级黄色 | 四虎在线网址 | 男女免费视频 | 欧美a∨亚洲欧美亚洲 | 国产天堂在线观看 | 美女高潮流白浆 | 日本少妇xx| 色人阁婷婷 | 斑马电影街 | 蜜桃av网 | 欧洲av一区 | 中日韩精品一区二区三区 | 91热热 | 男女在线视频 | 欧美日韩激情一区 | 欧美视频你懂的 | 欧美另类z0zx974 | 欧美国产日韩一区二区 | 亚洲狠狠操| 操你啦av | 国产又黄又大又粗的视频 | 天天天天天干 | 亚洲 欧美 激情 另类 | 欧美怡红院一区二区三区 | 色综合中文字幕 | 欧美黄色片 | 日韩精品免费一区二区夜夜嗨 | 国产成人啪精品午夜在线观看 | 国产精品原创 | 色综合中文字幕 | 国产精品不卡在线观看 | 男人添女人荫蒂视频 | 女裸网站 | 在线观看黄色网 | 美女被揉胸动态图 | 国产精品区二区三区日本 | 精品人妻一区二区色欲产成人 | 日韩电影三级 | 国产精品99久久久久久久久 | 五月天色人阁 | 国产又黄又大又粗的视频 | 欧美日韩综合一区二区三区 | 中文字幕日韩在线视频 | 波多野结衣在线观看一区 | 欧美日韩www | 久久亚洲av无码西西人体 | 蜜桃av免费观看 | 久久亚洲av无码西西人体 | 曰韩三级 | 亚洲精品丝袜日韩 | 一本久久久 | 一级黄色大片免费观看 | 操欧美孕妇 | 九九欧美 | 国产精品原创 | 成人一区在线观看 | 成人9ⅰ免费影视网站 | 88福利视频 | 日韩精品四区 | 精品精品精品 | 一色桃子av | 国产精品嫩草久久久久 | 亚洲一二三区av | 先锋影音成人 | 男生操女生的视频软件 | 日本岛国大片 | 国产精品原创 | 国产又粗又黄又爽又硬 | 激情综合激情 | 国产乱子伦精品 | 日本成人一区二区三区 | 黄色小视频在线 | 欧美同性视频 | 一本久久久 | 色小妹av| 日韩精品免费一区二区夜夜嗨 | 四虎在线网址 | 中文字幕亚洲无线码在线一区 | 夜夜操夜夜骑 | 成人9ⅰ免费影视网站 | 女人十八毛片嫩草av | 日本不卡一区二区 | 国产成人短视频在线观看 | 激情小视频在线观看 | 波多野结衣在线看 | 91成人精品| 中文字幕亚洲无线码在线一区 | a黄色大片| 少妇愉情理伦三级 | 午夜窝窝 | 国产精品久免费的黄网站 | 日韩精品四区 | 一边亲一边摸一边脱一边免费 | 五月香婷婷 | 特黄a级片 | 国内精品免费视频 | 少妇熟女一区 | 国产又黄又大又粗的视频 | 国产免费黄色小说 | 国产欧美精品一区二区 | 欧美a在线 | 色人阁婷婷| 中日韩精品一区二区三区 | 麻豆久久久 | 国产一极片 | 国产美女视频 | 青青碰 | 国产天堂在线观看 | 人妻射精一区二区 | 中文字幕5566| 成年人在线视频观看 | 亚洲色图首页 | 国产网友自拍 | 超碰在线1 | 97中文在线 | 密臀av在线 | 日本岛国大片 | 亚洲视频一二三区 | 国产精品99久久免费黑人人妻 | 手机在线不卡av | 欧美性猛交视频 | 久久er99热精品一区二区 | 国产免费三片 | 91成人在线观看喷潮 | 91免费网站在线观看 | 91视频一区二区 | a级在线观看 | a久久久久 | 五十路毛片 | 操你啦av| 中文字幕视频在线 | 欧美大成色www永久网站婷 | 中文字幕无码精品亚洲资源网久久 | 国产在线播放不卡 | 新天堂在线资源 | 久久精品a| 欧美怡红院一区二区三区 | 懂色av一区二区三区四区五区 | 免费色网站 | a久久久久 | av不卡在线看 | 欧洲亚洲一区 | 亚洲色图首页 | 国产免费黄色小说 | 老女人黄色片 | 蜜桃av免费观看 | 97自拍视频 | 成人一区在线观看 | 国产片大尺度裸露床戏 | 福利视频网站导航 | 国产熟妇另类久久久久 | 久久精品国产亚洲av麻豆色欲 | 九一国产在线观看 | 中文字幕亚洲天堂 | 天天天天天干 | 91免费在线播放 | 黄色小视频在线 | 亚州av一区二区 | 精品国产xxx | 伊人久久综合影院 | 人妻射精一区二区 | 黄色高清视频在线观看 | 沈悦高志欣 沈镇南原著小说 | 欧美激情站| 亚洲欧美在线综合 | 亚洲视频精选 | 男人的天堂在线 | 欧美怡红院一区二区三区 | 亚洲图片综合网 | a级黄色网址 | 性爱免费视频 | 沈悦高志欣 沈镇南原著小说 | 国产三级一区 | 91黄色免费 | 第一次处破女h圆房~h嗯啊 | 日韩免费黄色片 | 午夜草逼 | 第一次处破女h圆房~h嗯啊 | 99一级片 | 国产精品久免费的黄网站 | 免费看黄色a级片 | www.天天操.com| 国产成人免费av | 日韩成人av在线播放 | 8x8x华人永久免费视频 | 亚洲 欧美 激情 另类 | 精品久久久久久久久久久久久久久久久 | 久久免费少妇高潮久久精品99 | 三上悠亚痴汉电车 | 日韩涩涩 | 69亚洲乱人伦 | 一本久久久 | 奇米影视av| 三上悠亚痴汉电车 | a级黄色网址 | 日韩怡春院 | 在线视频第一页 | 欧美国产日韩一区二区 | 久久精品国产精品 | 国产精品久久久久久久久久久久久 | 玖玖色在线 | 91偷拍视频| 国产成人三级一区二区在线观看一 | 草免费视频 | 日本欧美亚洲 | 国产乱码精品一区二区三区忘忧草 | 韩国一级淫片免费看 | 国产做受高潮动漫 | 亚洲白浆 | japan丰满matuye肉感 | 亚洲视频 一区 | 亚洲欧洲自拍 | 少妇搡bbbb搡bbb搡小说 | 免费视频99| 亚洲av电影一区二区 | 国内老熟妇对白hdxxxx | 我把老师操了 | 青青碰| 九色视频偷拍少妇的秘密 | 美国禽片禁式1一9 | 黄色小说电影 | 日韩一级片免费观看 | 国产麻豆91视频 | 五月香婷婷| 精品久久久久久久久久久久久久久久久 | av资源每日更新 | 日批免费在线观看 | 色婷婷激情网 | 精品国产av一区二区三区 | 五月中文字幕 | 天天干天天噜 | 中文字幕日韩在线视频 | igao在线视频 | 娇妻翘臀被征服绿帽 | 国产精品入口麻豆 | 韩国裸体美女 | 综合久久久久久久 | 黄页网址在线观看 | 你懂的网址在线观看 | 天堂网成人 | 在线观看va | 91高清在线免费观看 | 日韩久久成人 | 四月婷婷| 精品亚洲一区二区三区 | 日本大尺度激情做爰hd | 午夜影院污 | 女裸网站 | 激情综合av | 亚洲最新网址 | 国产熟妇另类久久久久 | 8x8x华人永久免费视频 | 亚洲国产精品自拍 | 日韩爽片 | 国产成人无码一区二区三区在线 | 一级片中文字幕 | 国产伦理av | 欧美视频你懂的 | 久久久久久国产精品视频 | 成人激情五月天 | 麻豆亚洲av熟女国产一区二 | 粉色视频免费 | 天天天天天干 | 中文字幕一区二区三区视频 | 韩日成人 | 亚洲最新网址 | 久久人人爽人人爽人人片av高清 | 人人澡人人爽 | 亚洲精品美女视频 | www.天天操.com | 日韩电影三级 | 精品香蕉一区二区三区 | 四虎影视永久免费 | 波多野结衣在线看 | 亚洲视频免费在线观看 | 波多野结衣人妻 | 亚洲播放器 | 国产熟妇另类久久久久 | 奇米影视av | 国产精品一二三四五六 | 欧美丰满老妇熟乱xxxxyyy | 欧美日韩www | 亚洲 欧美 激情 另类 | 亚洲 欧美 激情 另类 | 久久国产精品免费视频 | 日本三级韩国三级美三级91 | 在线性视频| 国产天堂在线观看 | 精品久久五月天 | 调教骚受 | 黄色天堂 | 五月婷婷综合激情 | 天天操狠狠操 | 国产美女视频 | 国产18照片色桃 | 日韩成人综合网 | 国产精品污www一区二区三区 | 中文字幕亚洲天堂 | 国内老熟妇对白hdxxxx | 天天综合网在线 | 黄色网址www | 女主播裸身做直播大全 | 波多野结衣成人在线 | 国产片大尺度裸露床戏 | 国内精品免费视频 | 爆操杨幂 | 日韩亚洲一区二区 | 国产乱码精品一区二区三区忘忧草 | 久久亚洲av无码精品色午夜麻豆 | 亚洲精品久久一区二区三区777 | 波多野结衣在线看 | 成人黄色一级电影 | 日韩一级片免费观看 | 欧美一卡二卡三卡 | 男人插女人下面视频 | 中文字幕一区二区三区视频 | 在线观看va | 午夜亚洲一区 | 五月丁香啪啪 | 久久亚洲av无码精品色午夜麻豆 | 中文字幕xxx| www.国产视频 | 青青草原av| 亚洲一区视频在线播放 | 日本欧美亚洲 | 爆操杨幂 | 欧美性xxxxx极品娇小 | 最新av在线播放 | 一级二级毛片 | 精品久久99 | 国产探花在线精品一区二区 | 在线观看日本 | 快播一级片 | 香蕉av网 | 曰韩三级 | 草莓视频www二区在线观看 | 激情综合激情 | 国产成人三级一区二区在线观看一 | 娇妻翘臀被征服绿帽 | 女裸网站| 91黄色免费| 99一级片 | 久久疯狂做爰流白浆xx | 阿v天堂网 | 爆操少妇| 一本久久久 | 波多野结衣人妻 | 国产精品嫩草久久久久 | 懂色av一区二区三区四区五区 | 国产情侣91 | 日本午夜小视频 | 我和岳交换夫妇爽4p晓娟小说 | 调教奶奴 | 国产三级视频在线 | 在线国产视频 | 特黄a级片| 欧美丰满老妇熟乱xxxxyyy | 亚洲超碰在线观看 | 九一国产在线观看 | 在线黄色小说 | 亚洲午夜天堂 | 玖玖天堂 | 香蕉视频911| 天堂网在线播放 | 粉色视频免费 | 色就色欧美 | 亚洲丰满 | av视屏在线| 国产精品人妻 | 自拍偷拍第二页 | 美女羞羞网站 | 老女人黄色片 | 91成人在线观看喷潮 | 被c到喷水嗯h厨房交换视频 | a级在线观看 | 国产理论在线 | 久久国产精品免费视频 | 冈本视频在线观看 | 日本少妇xx| 亚洲成人av电影 | 色妞www精品视频 | 五十路毛片 | 国产精品人妻 | 草莓视频www二区在线观看 | 国产精品.www | 冈本视频在线观看 | 欧美一级性片 | 中文字幕精品亚洲 | 五十路毛片 | 中文字幕精品亚洲 | 阿v天堂网 | 91在线视频免费观看 | 国产精品原创 | 蜜桃传媒| 亚洲欧美日韩精品 | 超碰在线91 | 久久久青草 | 免费播放片大片 | 欧美国产日韩一区二区 | 黄色三级图片 | www一区二区三区 | www.激情 | 国产精品视频一二三区 | 美女黄色免费网站 | 亚洲视频 一区 | 国产又粗又黄又爽又硬 | 性爱免费视频 | 久久亚洲av无码西西人体 | 不用播放器的av网站 | 色婷婷激情网 | 日本免费三片在线播放 | 国内老熟妇对白hdxxxx | 欧美性xxxxx极品娇小 | 女明星yin乱聚会 | 日本黄色网址大全 | 奇米影视av | 中文字幕日韩在线视频 | 在线观看免费观看 | 人妻少妇被猛烈进入中文字幕 | 中文字幕人妻一区 | 国产成人无码一区二区三区在线 | 女主播裸身做直播大全 | 欧美乱码视频 | 男女免费视频 | 久久久久极品 | 蜜桃av网 | 欧美激精品 | 中国女人内谢69xxxx | 蜜桃传媒| 国产精品99无码一区二区 | 麻豆视频一区二区 | 日批免费在线观看 | 奇米91| a视频在线看 | 少妇精品无码一区二区三区 | 韩国裸体美女 | 91春色| 免费看片网站av | 久热精品在线观看 | 人妻少妇被猛烈进入中文字幕 | 日韩爱爱网址 | 蜜桃传媒 | 免费在线播放 | 男男双性顶撞喘嗯啊 | 香蕉a| 草莓视频www二区在线观看 | 精品亚洲一区二区三区 | 国产三级视频 | 久久伊人草 | 欧美视频你懂的 | 91免费网站在线观看 | 国偷自产av一区二区三区麻豆 |